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a b s t r a c t

Image texture enhancement is an important topic in computer graphics, computer vision and pattern
recognition. By applying the fractional derivative to analyze texture characteristics, a new fractional
differential operator mask with adaptive non-integral step and order is proposed in this paper to enhance
texture images. A non-regular self-similar support region is constructed based on a local texture similarity
measure, which can effectively exclude pixels with low correlation and noise. Then, through applying sub-
pixel division and introducing a local linear piecewise model to estimate the gray value in between the pixels,
the resulting non-integral steps can improve the characterization of self-similarity that is inherent in many
image types. Moreover, with in-depth understanding of the local texture pattern distribution in the support
region, adaptive selection of the fractional derivative order is also performed to deal with complex texture
details. Finally, the non-regular fractional differential operator mask which incorporates adaptive non-integral
step and order is constructed. Experimental results show that, for images with rich texture contents, the
effective characterization of the degree of self-similarity in the texture patterns based on our proposed
approach leads to improved image enhancement results when compared with conventional approaches.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Image texture enhancement aims to improve the quality of an
image by modifying its attributes. A number of cutting-edge techni-
ques have been proposed which can be divided into two categories:
transform-based [1] and spatial domain-based [2]. Transform-based
methods regulate coefficients associated with the frequency domain,
followed by an inverse transform to obtain the resulting image, based
on which image enhancement can be achieved. However, these
methods may introduce ringing effect and additional noise. On the
other hand, spatial domain-based methods can avoid these problems
without the need to perform frequency domain transform, resulting
in less computation. Among the different enhancement approaches,
the differential mask operator stands out as a particularly important
example. Differential operator masks can be further categorized as
integral differential and fractional differential operators. As for image
improvement, most integral-differential operators (e.g., Sobel, Pre-
witt, and Laplacian of Gaussian operators) behave well when used for
enhancing high-frequency features. Nevertheless, their performance
deteriorates significantly when applied to smooth regions.

Pu et al. [3] apply the theory of fractional differential operator to
address these problems. Since a fractional differential operator is

capable of characterizing fractal-like structures [4] which are often
found in the texture regions, this class of operator is considered as an
effective tool for texture enhancement in images. Through analyzing
the geometric and physical properties of fractional differential opera-
tors, Pu et al. [3] have developed an n�n fractional differential
operator mask, and it was noticed that the adoption of the mask
results in better enhancement of texture details compared to tradi-
tional integral-based differential operators [5]. It was further observed
that the fractional differential operator has the capability of not only
preserving high-frequency contour features, but enhancing the low-
frequency texture details in smooth areas as well. Gao et al. [6] applied
the fractional differential operator to quaternions, and designed a set
of masks which are referred to as quaternion fractional differential
(QFD) operators, which generalize the previous fractional differential
operators.

However, for image enhancement, some problems still exist
with the fractional differential operator. To begin with, traditional
fractional differential operators usually consider fixed-size mask
templates, leading to ineffective processing of pixels corrupted by
noise and with low correlations. Moreover, the spatial step in the
numerical implementation of the fractional differential operator
based on the definition of Grümwal–Letnikov usually advances by
one. In other words, the default minimum distance is assumed to
be one pixel. As a result, the high degree of self-similarity that
many images exhibit is not well characterized. In addition, it is not
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convenient to manually search for the optimal fixed fractional
derivative order which matches the local texture details. In view of
these problems, we propose a novel fractional differential operator
mask with adaptive non-integral step and order in this paper for
the enhancement of texture details. The main contributions of this
paper are as follows:

(1) We identify local non-regular self-similar support regions by
analyzing texture features, such that highly correlated pixels
can be focused on while noisy pixels are excluded.

(2) We select non-integral steps and fractional orders for the
support region in an adaptive way, such that the degree of
self-similarity in complex textures can be well characterized.

(3) We design a non-regular fractional differential operator mask
with fractional order and adaptive non-integral steps, such
that the texture enhancement performance can be optimized
regardless of whether the regions consist of high or low
frequency patterns.

The paper is organized as follows. The proposed algorithm is
introduced in Section 2, followed by the analysis of experimental
results in Section 3. Finally, our conclusions are summarized in
Section 4.

2. Fractional differential operator mask with adaptive non-
integral step and order

As complex textures are characterized by irregular and disorderly
patterns, a novel approach based on adaptive fractional differential
operator is proposed in this paper to enhance these patterns. Fig. 1

provides an overview of the algorithm. As can be seen, with a suitable
texture similarity measure, a local support cross skeleton domain, i.e.
{hpi }, where iAf0;1;2;3 g denotes the four directions, can be defined.
Once such a support skeleton domain, which can be partitioned into
two sets H(p) and V(p) corresponding to the horizontal and vertical
directions respectively, is determined, a non-regular support region
Ωp ¼ [qAVðpÞHðqÞ can be constructed. Based on the proposed skele-
ton domain and its associated support region, the local adaptive
fractional order can be dynamically determined, and the result can
be computed at a sub-pixel resolution.

2.1. Non-regular support region with self-similarity

Before introducing the non-regular support region, we first
define the following notations. As shown in Fig. 2(c), Ωp is defined
as the non-regular neighboring region of an anchor point p. Wp is a
square window of radius r which represents the traditional fixed
size mask.

Unlike [7] where the pixel value Ip is used as the reference
value, we update it dynamically based on a weighted
combination of itself and neighboring pixels at a distance h, which
makes the skeleton more robust against noise. Considering the
right arm h0p of the skeleton for p, the updated reference value is
given as

~I
ðh0p Þ
p ¼ ð1�αÞ~I ðh

0
p �1Þ

p þαIðxþh0p; yÞ ð1Þ

where ~Ip
0 ¼ Ip, and α is a parameter for controlling the pixel

similarity and update rate. Limited by the support radius ofWp, the
right span h0p is within the range [1,r]. In our case, h0

p corresponds
to the value of a parameter m ðmA ½1;2; ⋯; r�Þ, such that the
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Fig. 1. Block diagram of the proposed method.

Fig. 2. Local non-regular support region construction: (a) original image, (b) local support region corresponding to the black box in (a), and (c) model of the support region.
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condition Iðxþm; yÞ
�� ��� ~I

ðm�1Þ
p

��� ���4τ is satisfied, where τ is a similarity

threshold. The values of hp
1;hp

2;hp
3

n o
can be obtained in a

similar way.
For a pixel q, where qAV(p), the optimal values of the horizontal

directional spans {hqþ , hq�}, as shown in Fig. 2(c), are obtained in a

similar way as those of hp
0;hp

2
n o

. Therefore, the non-regular support

region Ωp with self-similarity is denoted as

Ωp ¼ [qAVðpÞHðqÞ ð2Þ

2.2. Dynamic estimation of sub-pixel values

In view of the high degree of self-similarity in images, the pixel
values are closely related to the arm lengths along different direc-
tions within the support region. The values tend to be similar along
directions with longer arm lengths, while they change more fre-
quently along directions with shorter arm lengths. In other words,
the self-similarity of neighboring pixels will increase with hp

i. When
hp

i is large enough, the correlation of the pixel values can be
effectively estimated through an integral number of pixels, and no

Fig. 4. Fractional differential operator mask along four directions: (a) h0, (b) h1, (c) h2, and (d) h3.

Fig. 3. Non-regular support regions in smooth areas: (a) table linen, (b) wall, and (c) stone house. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)
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further sub-division of the pixels is necessary. On the other hand, a
small value of hp

i may lead to an underestimation of the degree of
self-similarity. As a result, it is necessary to sub-divide the original set
of pixels into sub-pixels when the directional arm hp

i is small as
follows:

ηip ¼ Gðr; hipÞ ¼
r

NðhipÞþξip

$ %
; hi

pA h0p; h1
p; h2p ; h3p

n o
ð3Þ

where ηip denotes the number of sub-pixels to be generated between
two original pixels, b c is the floor operator, NðhipÞ represents the
number of integral pixels that one of the arms covers, and ξip is a pre-
specified parameter.

With a suitable choice of ξip, we limit the value of ηip to the
range [0, 2]. A value of ηip ¼ 0 indicates that there is no need to
divide the unit pixel interval. We average the neighboring integral
pixels along the arm direction when ηip ¼ 1. On the other hand,
when ηip ¼ 2, a local piecewise linear model is adopted to estimate
the intensity of the sub-pixels, which is given as

Ik ¼ ak1Yþak2; ηip ¼ 2 ð4Þ

where k¼mþ 1
ηip þ1

Uc represents the location of a sub-pixel, and
cA{1,2} corresponds to the c-th interval, ak1 and ak2 are model

parameters, and Y denotes a reference integral pixel gray value
which is either Im or Imþ1, depending on which one is closer to the
current sub-pixel along the arm direction.

2.3. Adaptive selection mechanism for the fractional order

Examples of non-regular support regions are highlighted in
yellow in Fig. 3. As can be seen, the arm lengths of regions 1, 4 and
6 are longer along the horizontal direction, and shorter along the
vertical direction. On the other hand, regions 2 and 5 have longer
arm lengths along the vertical direction. Since the arm lengths
reflect the dominant direction of the underlying texture patterns,
we aim to enhance the texture along these major directions, and
attenuate the pattern along the minor directions. This can be
achieved by increasing the fractional order for the longer arms,
and decreasing the order for the shorter arms.

As observed in [3], a suitable range of the fractional order v is
from 0.4 to 0.7. To design a smooth mapping between hip and vip,
we consider the following exponential model:

vip ¼ TðhipÞ ¼ b1expð�
hi
p

r
Þþb2; hi

pA ½1; r� ð5Þ

Fig. 5. Comparison between integral differential operators and our operator: (a) original, (b) Laplacian, (c) Sobel, and (d) our result. The local texture highlighted in red is
enlarged in (e) and (f), and their corresponding vertical projections are shown in (g)–(j) respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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where b1 and b2 are model parameters. In addition, vip should meet
the following requirements:

vipA ½β1; β2�
β1; β2 A ½0:4; 0:7�
vip ¼ β1jhip ¼ r ; vip ¼ β2jhip ¼ 1

8>><
>>: ð6Þ

Based on Eq. (5), the set of fractional orders vp0; vp1; vp2; vp3
� �

can be computed.

2.4. Adaptive fractional differential operator mask construction

Due to different texture pattern distribution and degree of self-
similarity along the four directions, each arm has its own frac-
tional order and non-integral step. Therefore, the approximate

Fig. 6. Results of different fractional differential operator methods. Three test images are selected: (i) bridge, (ii) hand (X-ray), and (iii) channel (remote sensing). (a) Original,
(b) R–L, (c) Pu's result, and (d) our result. The local regions highlighted in red are enlarged in (e)–(j). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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form of the fractional derivative of a signal f(t) can be expressed as

dvf ðtÞ
dtv

� 1

ðηipþ1Þvip
∑
t�a

m ¼ 0
∑
ηip

c ¼ 0

vip
m
ηip

2
664

3
775f t� mþ 1

ηipþ1
Uc

 !" #
ð7Þ

where a denotes the interval within which the numerical deriva-

tive is evaluated,

vip
m

ηip

2
664

3
775¼ ð�1Þm U ðηip þ 1Þ þ c

Γð�vip þ1Þ
½m U ðηip þ1Þþ c�!Γf�vip �½m U ðηip þ1Þþ c�g, and Γ

denotes the gamma function.
To ensure that the fractional differential operator mask can

sufficiently cover the spatial extent of local texture patterns, we set
the value of the radius r to 5. Using this value in Eq. (3), we can
dynamically compute the number of divisions between pixels. As a
result, the maximum number of mask coefficients Csn along each
direction is 7, and they can be computed from Eq. (7) as follows:

Cs0 ¼ 1

ðηip þ1Þv
i
p
� 1

Cs1 ¼ 1

ðηip þ1Þv
i
p
� ð�vipÞ

⋮

Csn ¼ 1

ðηip þ1Þv
i
p
� ð�1ÞnΓðvip þ1Þ

n!Γðvip �nþ1Þ

⋮

Cs6 ¼ 1

ðηip þ1Þv
i
p
� ðvipÞ!

6!ðvip �6Þ!

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð8Þ

Fig. 7. More comparison with our approach: (a) original, (b) HE, (c) Xiang's result, (d) Tanaka's result, (e) GF, and (f) our result. (For interpretation of the references to color in
this figure, the reader is referred to the web version of this article.)

Table 1
Evaluation results (AG, AE, and APSNR) of different fractional differential operator
methods.

Images Evaluation R–L Pu's result Our result

Building AG 0.0325 0.0461 0.1211
AE 7.1102 7.0914 7.5209
APSNR 13.0211 14.4533 18.1760

Hand (X-ray) AG 0.0598 0.0671 0.0973
AE 5.8670 4.0678 5.978
APSNR 16.1891 17.4944 20.9798

Channel (remote sensing) AG 0.0278 0.0644 0.0767
AE 7.4953 7.5451 8.1062
APSNR 15.5417 16.8505 19.4330
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As a result, the operator masks corresponding to the four
directions can be constructed as shown in Fig. 4. As can be seen,
the highlighted yellow region is the local shape-adaptive region
Ωp, and the red region is its support cross skeleton domain.
Pseudo-code for the proposed method is summarized in Algorithm
1. To achieve a balance between stability and adaptivity in the
pixel update process, the parameter α is set to a suitable value

(e.g., 0.6). The similarity threshold τ can be used to determine the
form of the non-regular region, and our experimental results
indicate that choosing τ¼10 results in better performance.

3. Experiments and analysis

We use the measures average gradient (AG) [8], average infor-
mation entropy (AE) [9], and average peak signal to noise ratio
(APSNR) to evaluate the performance of the proposed approach.

AG is a measure of image contrast, and larger values correspond
to stronger texture patterns. The measure is defined as follows:

AG¼ 1
ðM�1ÞðN�1Þ ∑

M�1

x ¼ 1
∑

N�1

y ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgx;y�gxþ1;yÞ2þðgx;y�gx;yþ1Þ2

2

s
ð9Þ

whereg denotes intensity level, and M�N is the size of an image.

Algorithm 1 : Fractional Differential Operator Mask with
Adaptive Non-integral Step and Order

Input: input image f, radius r, parameter α,similarity threshold
τ, parameter ξ.

Output: output image g
For each pixel
1: Use Eq. (1) to compute the local support skeleton {hp0, hp1, hp2, hp3};
2: Use Eq. (2) to determine the non-regular support region Ωp;
3: Use Eq. (3) to generate sub-pixels for each arm hp

i , and Eq. (4)
to compute gray values for sub-pixels;

Fig. 8. Local texture detail enlargement of highlighted red regions in Fig. 7: (a) Cat's wrinkle, (b) Baby's clothes, and (c) Porcelain ware's pattern.

Table 2
Evaluation results (AG, AE, and APSNR) of different enhancement methods.

Images Evaluation HE Xiang's
result

Tanaka's
result

GF Our
result

Cat AG 0.0765 0.0872 0.0903 0.1265 0.1582
AE 6.0165 6.4481 6.3183 8.7136 10.4003
APSNR 9.2294 18.4164 19.5639 25.5906 27.9560

Baby AG 0.0315 0.0148 0.0614 0.0412 0.0616
AE 6.3418 4.5472 6.4432 7.2111 7.3767
APSNR 12.5655 11.7318 17.7602 20.0147 22.7311

Porcelains AG 0.0106 0.0123 0.0200 0.0265 0.0274
AE 6.1004 6.5716 6.7752 7.5937 7.8716
APSNR 10.5356 17.0059 20.1065 20.1065 24.8011

Table AG 0.0408 0.0270 0.0320 0.0679 0.0825
linen AE 6.7514 5.9417 6.8891 7.5855 7.6544

APSNR 14.6699 14.6699 17.8987 21.3929 22.4762

Bridge AG 0.0495 0.0449 0.0492 0.0501 0.1575
AE 6.8922 6.4513 6.5728 6.9100 7.4600
APSNR 13.8538 19.1534 19.4240 19.7488 19.7756
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4: Use Eq.(5) to estimate the set of fractional orders {vp0, vp1, vp2,
vp
3};

5: Use Eq. (8) to compute coefficients for the mask;
6: Apply weighted convolution to obtain g.
End For

AE is a measure of the richness of image details. Smaller values
indicate that less information content is associated with the image.

It is defined as follows:

AE¼ � ∑
L�1

i ¼ 0
PðgiÞlog 2PðgiÞ ð10Þ

where P(gi) is the probability distribution function of the image
intensity level gi, and L is the total number of intensity levels.

APSNR is a standard image fidelity measure, and a higher value of
APSNR indicates better performance of noise resistance.

Fig. 9. The X-ray image of human chest: (a) original, (b) Setty's result, (c) Rikxoot's result, (d) GF, (e) our result, (f) and (g) enlargement of the two highlighted regions in (a),
(h) evaluation results based on AG, and (i) evaluation results based on APSNR.
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3.1. Comparison with integral differential operator masks

Most typical differential operator masks such as the first-order
Sobel, Prewitt and Roberts operators, and the second-order Lapla-
cian operator, are in fact integral differential operators. They may
perform well in the high frequency regions, but their performance
will deteriorate when applied to rich texture patterns in smooth
regions. Fig. 5 shows an example which compares our approach
with classical integral differential operators. The vertical projec-
tions of the image gray level values are also shown.

The results of the Laplacian and Sobel operators are shown in
Fig. 5(b) and (c). The results clearly show that the rich texture in
smooth areas (see Fig. 5(b) and (c), black lines on the suit, gray-
black stripes on the tie) is basically removed, and the gray values
of the corresponding pixels appear dark. At the same time, due to
excessive enhancement of the high frequency components, wide
white edges appear in those regions (see Fig. 5(e) and (f)). Different
from the integral differential operators, the proposed approach takes
into consideration these texture details in smooth areas, and judi-
ciously emphasizes the local texture similarity. As a result, texture
detail in the smooth regions is more distinct in Fig. 5(d). In general, the
proposed algorithm outperforms the traditional integral differential
operator methods on the edges in terms of its capability to avoid
overly emphasizing the high frequency components (see Fig.5(f)).

The same conclusion can also be obtained from their vertical
projections. It can be seen in Fig. 5(g)–(j) that the projection

envelopes for the original image and the enhanced image based on
our approach are highly similar, and additional peaks are added to
the projection envelope of the enhanced image in our case (see the
highlighted red region in Fig. 5(j)). This indicates that some of the
image details have been judiciously enhanced without distorting
the overall image structure. However, the projection envelopes of
Laplacian or Sobel (see Fig. 5(h)-(i)) operators are very different
from that of the original image, which indicates that significant
image distortion has been introduced.

3.2. Comparison with other fractional differential operator
approaches

Fractional differential operator methods are capable of preserving
texture detail in smooth areas. However, previous methods do not
take into consideration the high degree of self-similarity in images,
and thus usually ignore local texture features. The performance of
the proposed algorithm is compared with Pu et al., [5] and the
traditional Riemann–Liouville (R–L) method in Fig. 6.

As shown in Fig. 6, while the texture details in the smooth areas
are well enhanced by the R–L method in all cases, the overall
brightness of the images decreases. Fig. 6(c) shows the enhancement
results based on the YiFeiPU-2 fractional differential operator mask
proposed in [5]. In spite of higher efficiency and better convergence
rate, this method cannot effectively take into consideration the
complexity and diversity of local texture patterns, thus leading to only

Fig. 10. Other X-ray/medical image enhancement results (left: original, right: our result): (a) cranial nerve, (b) retina, (c) vertebral column, (d) heart, and (e) fish.
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marginal enhancement of the small blood vessels in Fig. 6(g) and (h).
Compared with Pu's work, our approach improves the self-correlation
in images and therefore it can enhance the local complex texture
patterns adaptively. As can be observed, the curved patterns of the
building in Fig. 6(e) and the branches of the river captured by a remote
sensing satellite in Fig. 6(j) are brighter and more distinct. Table1
summarizes the performance of the proposed algorithm in terms of
APSNR, AG, and AE. It is obvious that our approach suppresses noise
while preserving texture details at the same time.

3.3. Comparison with different image enhancement methods

3.3.1. Image enhancement results
The proposed algorithm is compared with other popular enhance-

ment algorithms like histogram equalization (HE), wavelet-based
regularization (Xiang et al. [10]), nonlinear smoothing and sharpening
(Tanaka et al. [11]) and guided image filtering (GF ) (He et al. [12]) in
Fig. 7 to validate its effectiveness.

As can be observed, HE results in excessively bright enhanced
images in Fig. 7(b) due to its dependence on the frequency of gray
level values. In addition, some false contours are visible around the
image edges in Fig. 7(b1), and the rich texture in the wall behind
the porcelain wares in Fig. 7(b3) cannot be effectively enhanced.
On the other hand, the approach proposed by Xiang et.al. cannot
effectively enhance the texture detail in smooth areas, resulting
in blurred patterns on the bed sheet (Fig. 7(c2)) and table linen
(Fig. 7(c4)), in spite of its improvement in enhancing sharp edges.
For the approach in [11], it is observed that some noise is present
as shown in Fig. 7(d3), due to its adoption of a simple unsharp
mask operation. While GF [12] avoids the problem of “gradient
reversal”, it mainly focuses on global enhancement, and does not
adequately consider the complexity of local regions, leading to the
deterioration of local rich texture patterns. It can be seen that
the texture distribution on the cat's face (see Fig. 7(e1)), and the
patterns on the table linen (see Fig. 7(e4)) have been changed to
different degrees.

Fig. 8 shows the enlarged local texture regions highlighted in
red in Fig. 7. It can be observed that the enhancement quality for
lines or texture in smooth areas such as wrinkles in the cat's ear
(see Fig. 8(a)), folds on the baby's clothes (see Fig. 8(b)), and
patterns on porcelain wares (see Fig. 8(c)) are superior to others.

Table 2 summarizes the evaluation results for the different
methods. It can be seen that the values of AG based on our
approach are higher than those of other methods, which demon-
strates its advantage in enhancing texture details. This is also
reflected in the high AE values, which measures the capability of
the approach in preserving texture information. Our result also
performs well in resisting noise based on the comparison of the
APSNR values.

In summary, the proposed algorithm can effectively preserve
texture details. It is also capable of adapting to the degree of local
texture complexity by creating sub-pixels and selecting the sui-
table fractional order.

3.3.2. Applications in medical image enhancement
Most medical images contain important structures, which are

characterized by low natural contrast when compared to sur-
rounding structures. To obtain high contrast directly from the
imaging device is expensive in terms of acquisition time, and in
general not preferable in view of the increased X-ray dose to the
patient. Therefore, digital post-processing plays a vital role in
medical image analysis. The proposed algorithm also performs
well in medical image enhancement, and Fig. 9 compares the
enhancement results of our approach with those of two previous
methods for a chest X-ray image.

The method proposed by Setty et al. [13] applied multiscale retinex
theory to improve the medical image as shown in Fig. 9(b). However,
the resulting intensity saturation contributes to local texture informa-
tion loss around the chest skeleton. Van Rikxoot et al. [14] focused on
the detection of complex structures through constructing an effective
classifier. However, the performance depends on a large number of

Fig. 11. Enhancement results of remote sensing image: (a) original, (b) Lee's result, (c) GF, and (d) our result. Three local regions highlighted in red are enlarged and placed at
the right of each image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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training examples. Compared with these results, our approach has
better image enhancement capability. This can be seen from the better
resolved shoulder joint and rib cage in Fig. 9(e) (enlarged versions are
shown in Fig. 9(f) and (g)). In addition, due to the newly proposed
non-regular support region in Section 2.1, noise amplification can be
effectively avoided before the application of the fractional differential
operator. As a result, APSNR of our approach is higher than those of
others, as seen in Fig. 9(i). We have also applied our approach to other
X-ray/medical images from the benchmark set,1 as shown in Fig. 10.
These results demonstrate that our algorithm performs well in texture
preservation and enhancement in smooth areas.

3.3.3. Application in remote sensing image enhancement
Remote sensing techniques are widely used for environmental

protection, terrain mapping and military surveillance. However,
different factors such as sensor limitation and atmospheric dis-
turbance may lead to unsatisfactory imaging quality such as low
contrast and/or blurring, which will in turn impede effective
analysis. Therefore, enhancement of remote sensing images has
become an important problem to be addressed. To show the
capability of our approach in remote sensing image enhancement,
we compare our result with those of Lee et al. [15] and GF [12]
in Fig. 11.

Due to the adaptive intensity transformation adopted in [15],
the winding river and highway in Fig. 11(b) appear more distinct,
but other details are less discernible due to the overall low
intensity of the image. On the contrary, due to overestimation of
the pixel values in the GF case (see Fig. 11(c)), some regions like
the roofs of buildings appear excessively bright. Fig. 11(d) shows
our result. We can observe that our approach can take full considera-
tion of local texture varieties, and details around the rivers or high-
ways are more conspicuous than those of other methods. In addition,
the overall intensity of the enhanced image is neither too high nor
too low.

Other high resolution images from the dataset2 are selected to
validate the performance of our approach further, as seen in
Fig. 12. It can be observed that the texture that is not usually well
distinguished in smooth area, like ripple on the sea, is more
discernable after enhancement through our approach.

4. Conclusion

In this paper, we have proposed an adaptive fractional differ-
ential operator mask for image enhancement. Through the identi-
fication of the main limitations of the previous fractional derivative-
based methods, we obtain better performance by introducing a
non-regular support region, and adaptively determining the asso-
ciated fractional order such that the high degree of self-similarity in
most images could be judiciously taken into consideration. In view
of the capability of our proposed approach in enhancing important
details of a large variety of image types, we shall further apply the
algorithm as a pre-processing step to different areas such as object
recognition and biometric analysis.
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